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Abstract: 

The purpose of this study was to determine the reliability of the Kinetic Communicator's (Kin-

Com) gravity correction procedure. To determine mechanical reliability, gravity correction was 

performed at 11 different angles while weights (1.15, 2.30, 3.45 and 4.60 kg) were suspended 

from the lever arm. Intraclass correlation (ICC) between trials showed that the Kin-Com was 

able to gravity correct weights with high reliability (R = 0.961-0.999). Gravity correction values 

from the 11 angles were analyzed with a one-way analysis of variance with repeated measures to 

determine if differences existed between gravity correction values collected at different angles 

for each weight condition. Even though reliability was good for each angle, gravity correction 

values collected near the vertical position differed from the gravity correction values collected at 

the horizontal position (P < 05). Differences decreased as weight increased. To determine 

clinical reliability, 25 subjects (age = 21.0 years, height = 16.6 cm, weight = 59.8 kg) were also 

gravity corrected in both the seated and prone positions at six different angles on 2 separate days. 

Correlation analysis between days showed good reliability (R = 0.83) for both positions when 

subjects were corrected at the horizontal. Reliability decreased as the lever arm approached 

vertical. Differences between gravity correction values existed at every angle measured for both 

positions. Even though the gravity correction was shown to be reliable at positions other than the 

horizontal, gravity correction should be performed at the horizontal position each time subjects 

are assessed. 

 

Article: 

1. INTRODUCTION 

Isokinetic exercise equipment has become increasingly popular within the past decade. 

Clinicians utilize isokinetic dynamometers for a variety of reasons, including evaluating 

muscular performance following injury [14,24] or surgery [10], pre-season screening to detect 

muscular imbalances and joint abnormalities [22], and testing of healthy individuals to examine 

the relationship between isokinetic parameters and sport performance [2,11,15,17,18,19]. 

 

Many of the uses of isokinetic dynamometry require the subject to be tested on only one 

occasion. However, repeated tests are appropriate in many cases to assess the progress (or lack 

thereof) of identified parameters over time. The critical issue of any test/retest situation is the 

reliability of the instrument. Isokinetic dynamometers have been shown to be relatively reliable 

in a number of studies with reliability coefficients ranging from 0.63-0.96 [8,9,13]. Several 

factors have been identified which influence the reliability of retest isokinetic measurements, in-
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cluding test velocity and type of contraction [23]. Test protocol was investigated by Harding et 

al. [9], who found reliability coefficients were consistently lower between occasions, rather than 

among repetitions, indicating that isokinetic testing should occur on more than one occasion. 

 

Isokinetic testing of various muscle groups is most commonly performed with the subject placed 

in a gravity-dependent position. Winter, Wells and Orr [26] and Nelson and Duncan [16] 

recognized that the effect of gravity significantly influenced quadriceps and hamstring torque 

production and advocated a gravity correction procedure for more accurate interpretation of 

muscle performance. Correction for the effect of gravity is particularly important when calcu-

lating hamstring to quadriceps reciprocal muscle group ratios [1,5,6,21,25]. 

 

Since the gravity correction procedure is advocated when testing reciprocal muscle group ratios 

in gravity-dependent positions, and subjects are commonly tested over time, the reliability of the 

gravity correction procedure should be investigated. Therefore, the purpose of this study was to 

determine the mechanical and clinical reliability of an isokinetic dynamometer's gravity 

correction procedure. 

 

2. METHODOLOGY 

2.1. Subjects 

Twenty-five female subjects (age = 21 ± 1.5 years, height = 166.6 ± 5.7 cm, weight = 59.8 ± 5.0 

kg) were recruited for participation in this study. Only healthy subjects, free from history of 

significant injury or pathology to the right knee extensor and flexor muscle groups were used for 

assessment. Subjects were screened by verbal interview. All subjects read and signed an 

informed consent form approved by the University's Human Investigation Committee. 

 

2.2. Instrumentation 

Gravity correction was assessed using a Kinetic Communicator (Kin-Corn, Chattecx Corp., 

Chattanooga, TN) isokinetic dynamometer. 

 

2.3. Procedures 

Mechanical reliability. The mechanical reliability of the Kin-Com's gravity correction 

procedure was assessed by determining the instrument's ability to measure the force of a known 

weight over a period of 15 sessions. The grip attachment was placed on the lever arm so that the 

load cell was 38 cm from the axis of rotation. A mark was made on the middle of the grip to 

denote where the force was to be applied. Force was applied by suspending known weights 

(1.15, 2.30, 3.45 and 4.60 kgs) from the grip attachment. Torque measurements were taken 

within a 150 degree arc so that horizontal (parallel with the floor) was 0 degrees (confirmed by 

level). When the lever arm was moved above horizontal, the direction was considered positive; 

below the horizontal was considered negative. The entire test arc was therefore from — 75 

degrees to 75 degrees. Eleven specific angles within the arc were used for force measurements: 

— 75, — 60, — 45, — 30, —15, 0, 15, 30, 45, 60, and 75°. The order in which angles were 

tested was randomized using a table of random digits [12]. 

 

For each trial, the lever arm was positioned to the appropriate angle as determined by the angle 

indicator on the computer screen. The 1.15 kg wt was suspended from the grip attachment and 

steadied. Once the resultant torque measurement was recorded, the weight was removed. The 



2.3, 3.45 and 4.6 kg weights were then suspended from the grip attachment and steadied so that 

torque measurements could be recorded. All weight was removed from the grip attachment prior 

to the next weight being applied. Once measurements were recorded for the four different 

weights at the first angle, the lever arm was repositioned to the next angle and the process was 

repeated. A second trial was performed later in the same day using the same testing order. A new 

order was established for each day's data collection. Data were collected on 15 separate days. 

 

Clinical reliability. The clinical reliability of the gravity correction procedure was examined by 

determining the instrument's ability to weigh the same limb, placed in the same position, on two 

different occasions. The right lower extremity of each subject was assessed within a spectrum of 

joint angles in random order. The spectrum included six angles, ;15 degrees apart, between 0 and 

75 degrees of flexion. The reference point for all gravity correction values was the position of the 

lever arm in space with respect to the horizontal. If the lever arm was above the horizontal, the 

angle was considered to be positive and if the lever arm was below the horizontal, the angle was 

negative. Gravity correction was performed in both the seated and prone positions. These posi-

tions were used to replicate isokinetic assessment of the quadriceps and hamstring muscle groups 

from seated and prone positions, respectively. The spectrum of joint angles used to determine 

clinical reliability while seated was 0, — 15, — 30, — 45, — 60 and — 75 degrees and while 

prone was 0, 15, 30, 45, 60, and 75 degrees. 

 

Once preliminary information (height, weight, age) had been recorded, subjects were instructed 

to perform a basic exercise and stretching program. The exercises were designed to prepare the 

musculature and to minimize passive tension within the muscles that may have influenced the 

gravity correction value. The program included riding a stationary bike with low resistance for 5 

min followed by static, pain-free stretching of the hamstring and quadriceps muscle groups. 

 

Gravity correction in the seated position occured with the hip flexed to approximately 100 

degrees. The axis of rotation of the knee was aligned with the axis of rotation of the 

dynamometer. Each subject was stabilized with a strap secured around the waist and 

another strap placed proximal to the knee to secure the thigh to the Kin-Com table. The force pad 

was secured to the anterior aspect of the distal lower leg so that the inferior border of the pad was 

at the mid-malleolar line.  

 

Once the subject was properly positioned and secured, the gravity correction mode of the Kin-

com software (version 3.3) was accessed. Gravity correction values were recorded with the lever 

arm positioned at six different angles: 0, — 15, — 30, — 45, — 60 and — 75 degrees. The 

negative sign denoted the fact that the lever arm was positioned at angles below the horizontal. 

The order of angle at which gravity correction was measured was randomized. To measure the 

gravity correction value, the lever arm was positioned at the first test angle. Each subject was 

instructed to completely relax the leg musculature while the force of the limb due to gravity was 

measured by the dynamometer. Once the torque value was recorded, the procedure was repeated 

for the remaining test angles. Subjects returned 2-5 days later to repeat the procedure (in the 

same order) to determine the reliability of the procedure. 

 

Gravity correction was performed in the prone position as recommended by the manufacturer. 

Each subject was positioned so that the axes of rotation of the knee and the dynamometer were 



aligned. The force pad was secured to the posterior aspect of the distal lower leg so that the lever 

arm length was equal to that used during the knee extension assessment. The lever arm was again 

positioned to angles of 0, 15, 30, 45, 60 and 75 degrees in random order. These angles were 

positive in sign because the lever arm was positioned above the horizontal. At each angle, sub-

jects were instructed to completely relax the leg musculature while the machine weighed the 

limb. The procedure was repeated 2-5 days following the initial test session. 

 

2.4. Statistical analysis 

Analysis of variance was used to determine intraclass correlation coefficients (ICC) for the 

mechanical reliability measurements. For 15 days, weights were suspended at each angle during 

two sessions, one in the morning and one in the afternoon. The morning and afternoon torque 

values were averaged together to provide a torque score for the day. A one-way analysis of 

variance with repeated measures for 15 days using the four weights as 'subjects' provided the 

data necessary to calculate the reliability coefficient (ICC). Eleven total coefficients were 

calculated to account for each of the angles tested. Four separate one-way analyses of variance 

with repeated measures for angle and days as 'subjects' were used to determine if gravity 

correction values differed between angles. 

 

Intraclass correlation was also used to determine clinical reliability coefficients. Twenty-five 

subjects were gravity corrected at six different angles on 2 separate days (test/retest). The 25 

pairs of scores provided the necessary data for the 12 coefficients. Two separate analyses of 

variance with repeated measures for angles were used to determine if gravity correction values 

differed between angles. 

 

3. RESULTS 

Two aspects of mechanical reliability were addressed in this study. The first dealt with the 

reliability of the Kin-Com's gravity correction mode; specifically, whether or not the gravity 

correction procedure reliably reproduced torque measurements when the same force was applied 

at the same point on the lever arm over 15 days. The second issue was to determine if the 

position of the lever arm significantly influenced the gravity correction value. Regardless of 

where the lever arm is positioned in space, the computer program calculates and displays the 

correction value at the horizontal position. Therefore, there should be no significant difference in 

gravity correction values collected at 11 different angles. To determine clinical reliability, the 

test/retest recordings of the gravity correction value for 25 subjects were analyzed. Since the 

gravity correction value was measured at six different angles in both the seated and prone 

positions, 12 separate reliability coefficients were calculated to cover all position/angle 

combinations. As with the issue of mechanical reliability, the gravity correction value was 

calculated to the horizontal position. Therefore, regardless of the angle at which the limb was 

positioned, the displayed gravity correction value should have been very similar. 

 

3.1. Mechanical reliability 

Table 1 presents the reliability coefficients for each angle tested. The average overall mechanical 

reliabil- 

Table 1 

Intraclass correlation coefficients for mechanical reliability over 15 days 



Angle ICC 

75 0.961 
60 0.991 
45 0.997 
30 0.998 
15 0.998 

0 0.999 
—15 0.999 
— 30 0.998 
— 45 0.997 
— 60 0.994 
— 75 0.973 

Average 0.991 
 
 

ity was R = 0.991. Reliability varied from R = 0.961 to R = 0.999 depending upon the angle at 

which the value was collected. Higher reliability was evident around the horizontal position and 

decreased as the lever arm approached the vertical in either the positive or negative direction. 

The reliability coefficients for the negative angles (below the horizontal) were collectively higher 

then for the positive angles (R = 0.992 vs. R = 0.989). The reliability at the horizontal position 

was R = 0.999, which was higher than the average of either the positive or negative directions. 

 

One-factor analysis of variance for each of the weight conditions indicate that the gravity 

correction values varied by angle to some degree for all weights tested. Scheffe post hoc analysis 

showed that significant differences for all four weight conditions occurred as the lever arm 

approached the vertical position ( — 75 or 75 degrees). For weight 1, the 60, 75, — 60 and — 75 

degree positions were significantly different than the other angles. For the second weight 

condition, only the 75 and — 75 degree position differed from the other angles. Differences 

continued to decrease as weight increased. The weight 3 and weight 4 conditions showed similar 

results in that only the 75 degree position differed significantly from the other 

positions. 

 

3.2. Clinical reliability 

Table 2 presents the test/retest reliability coefficients for the gravity correction values of the 25 

subjects measured at six different angles. The angle value is the position of the lever arm in 

space, rather than the anatomical value or actual degrees of flexion at the knee joint. For the 

seated position, the force pad was positioned on the anterior aspect of the distal lower leg so that 

when the lever arm was at the 0 degree position (horizontal), the knee was in slight flexion (6.3 ± 

3.3 degrees). For the prone position, the force pad was placed on the posterior aspect of the distal 

lower leg so that subjects were actually in slight hyperextension ( — 2.2 ± 3.4 degrees flexion) 

when the lever arm was at the 0 degree angle position. 

 

The average of the reliability coefficients was similar for the seated (R = 0.83) and prone (R = 

0.83) positions. The highest reliability coefficient for the seated position was at the 15 degree 

position (R = 0.96), and the lowest was at the 75 degree position (R = 0.45). In general, 

reliability was better around the horizontal position and decreased as the lever arm approached 

vertical. The reliability values for the prone position did not vary as much between angles as did 

the values for the seated position. Zero and 45 degrees of flexion displayed the highest reliability 

coefficient (R = 0.88), whereas the 30 degree position displayed the lowest coefficient (R = 

0.66). 



 

Analysis of variance for differences in gravity correction values collected at the six different 

angles demonstrated that, for both conditions, all gravity correction values were significantly 

different depending upon where the lever arm was positioned in space. 

 

4.DISCUSSION 

4.1. Mechanical reliability 

The major finding of the mechanical reliability portion of this study was that the Kin-Com's 

gravity correction procedure is very reliable. The instrument was able to reproduce very similar 

gravity correction values when weights were suspended from the lever arm over a period of 

several days. These results agree with Farrell and Richards [4] who reported an ICC of 0.999 for 

static tests of the force measuring system. There was no reason to suspect the Kin-Com would be 

less reliable when measuring torque in the gravity correction mode than when in the strength 

assessment mode. However, the reliability of the gravity correction mode should not be assumed 

based on the findings from a different mode. 

 

A possible factor contributing to such high reliability coefficients is the number of days used for 

data collection. Intraclass correlation coefficients (ICC) are derived from an analysis of variance. 

When a one-factor ANOVA with repeated measures model is used, as in this study, the 

reliability coefficient is calculated using the equation: mean square between minus mean square 

error divided by mean square between [3]. The resulting value will vary from between 0 and 1, 

approaching 1 as the error term decreases. Since the mean square is calculated by dividing the 

sum of squares by the appropriate degrees of freedom, the mean square will decrease as the 

degrees of freedom increase. Therefore, the more trials used, the smaller the error term becomes. 

As such, the reliability coefficient will approach 1. 

 

In order to make a comparison with clinical reliability, ICC's for the mechanical data were 

recalculated using measures obtained on only day 1 and day 3 (Table 3). Even though total 

degrees of freedom 

Table 2 
Intraclass correlation coefficients for clinical reliability 

Angle Seated Prone 

0 0.94 0.88 
15 0.96 0.87 
30 0.95 0.66 . 
45 0.92 0.88 
60 0.73 0.82 
75 0.45 0.85 
Average 0.83 0.83 

 

Table 3 

Intraclass correlation coefficients for mechanical reliability over 2 days 

Angle ICC 

75 0.837 
60 0.957 
45 0.977 
30 0.965 



15 0.990 
0 0.992 

— 15 0.996 
—30 0.997 
—45 0.909 
— 60 0.966 
— 75 0.960 

Average 0.959 
 

dropped from 59 to 7, the reliability coefficients remained good for all positions tested. 

 

4.2. Clinical reliability 

The clinical reliability of the Kin-Coin's gravity correction procedure proved to be reasonably 

good. As expected, the clinical reliability coefficients were not as high as the mechanical 

reliability coefficients. Gravity correction for knee extension was performed with the subject in a 

seated position so that the lower extremity moved in an arc below the horizontal. For knee 

flexion, subjects were positioned prone so that the lower leg moved in an arc above the 

horizontal. From the seated position, the gravity correction value proved to be highly 

reproducible when subjects were corrected near the horizontal (R = 0.92-0.96). However, when 

subjects were placed in the 60 or 75 degree position, the reliability of the gravity correction 

procedure became unacceptable. The average reliability for the seated and prone positions was 

identical (R = 0.83). Reliability for knee flexion was acceptable for all positions except for the 

30-degree position. We cannot speculate why this position demonstrated the lowest reliability. 

 

4.3. Angle differences 

All 11 positions of the lever arm provided reliable results mechanically. That is, the gravity 

correction value produced by a suspended weight at a given angle was highly reproducible over 

time. The gravity correction value displayed on the screen after completing the gravity correction 

procedure is the 'weight' (of the limb) at the horizontal position. If a limb is weighed for gravity 

correction with the lever arm at the horizontal position, and again with the lever arm at a position 

other than the horizontal, the two resulting gravity correction values should be equal. Even 

though the Kin-Com reliably reproduced the gravity correction values of known weights through 

the entire range of positions tested, the value collected at one position was not necessarily similar 

to the value collected at another position. 

 

When the lever arm was positioned anywhere between 45 and — 45 degrees, the gravity 

correction values were not significantly different from the values collected with the lever arm 

positioned at the 0 degree position. However, as the lever arm approached the vertical in either 

the positive or negative direction, the gravity correction values varied significantly. Even though 

the ± 60 and ± 75 degree positions reliably reproduced the gravity correction value over time, the 

values were consistently different from the values collected at the other positions. 

 

The differences between angles decreased as weight was added. When the 2.3 kg weight was 

used to provide force, the gravity correction values were similar between the 60 and — 60 

degree positions. Only when the lever arm was positioned at either end of the spectrum did the 

gravity correction differ significantly from those collected at, or near the horizontal position. The 

trend continued to improve as the weight used to provide force increased. 

 



These findings may have implications as to where gravity correction should be calculated when 

weighing limbs of less mass. Perrin et al. [20] showed that gravity correction is necessary when 

assessing strength of the shoulder internal and external rotator muscle groups. Since the mass of 

the upper extremity is considerably less than the lower extremity, gravity correction values will 

not be as large. Therefore, gravity correction for assessment of the upper or the lower extremity 

muscle groups of smaller subjects should be performed near the horizontal position. 

 

For the clinical tests, every position tested provided a gravity correction value significantly 

different from the value collected at the horizontal. As discussed previously, the differences 

between angles in the mechanical reliability section decreased as weight increased so that only 

the 75-degree angle position differed from the horizontal. The difference in results between the 

mechanical and clinical tests may be explained if the subjects' limbs were not producing as much 

torque as the weights produced. Table 4 presents the average gravity correction value produced 

by each weight during the mechanical reliability section and the average gravity correction value 

for 25 subjects for each test position. Gravity correction values from the seated position fell 

between the torque values produced by the 2.3 and 3.45 kg weights. Gravity correction values 

from the prone position fell between the 3.45 and 4.6 kg weights. Therefore, the differences in 

gravity correction value between angles is not explained by amount of weight. 

 

Table 4 

Average gravity correction value produced by experimental weights and subjects 

1.15 kg weight 2.8 
2.30 kg weight 6.3 
3.45 kg weight 9.5 
4.60 kg weight 13.1 

Subjects seated 8.0 
Subjects prone 11.0 

 

There are several other factors that might account for the differences between the mechanical and 

clinical portions of this study. One major difference between the two portions was the presence 

of subjects as opposed to weights. Subjects were required to purposefully relax the musculature 

of the lower extremity during the gravity correction procedure so that the 'dead weight' of the 

limb would provide the force on the load cell. Without EMG monitoring, it was impossible to 

absolutely confirm that subjects were, in fact, completely relaxed. The investigator attempted to 

encourage and confirm relaxation by moving the thigh of the subject to detect tone. If the subject 

actively pushed into or lifted away from the load cell during the gravity correction procedure, the 

resultant gravity correction value could be dramatically different from the value measured when 

relaxed. Because the clinical procedure was dependent upon subject cooperation and the 

mechanical procedure was not, the clinical reliability was expected to be somewhat less. 

 

Gravity correction values could also have been influenced by the passive tension of the lower 

extremity musculature. Ford et al. [7] demonstrated that with subjects positioned in the seated 

position, tension in the knee flexors caused more force to register on the load cell resulting in a 

higher gravity correction value. A warm up and stretching session was employed before each 

testing session, but no effort was made to control for the actual amount of flexibility among 

subjects. Differences in flexibility between days could have accounted for lower reliability 

coefficients. 



 

Attachment of the weight and the limb to the apparatus was also somewhat different for the me-

chanical and clinical aspects of the study. For the mechanical reliability portion, weight was 

suspended from the grip attachment so that force was applied at exactly the same point each 

time. When subjects were used, the force pad attachment was used so that the pad contacted the 

anterior aspect of the leg while seated and contacted the posterior aspect of the leg while prone. 

The pad was secured to the leg by a padded velcro strap which encircled the lower leg. When 

subjects were positioned to assess knee extension (seated), the weight of the leg was transferred 

through the strap to the load cell during the gravity correction procedure. The same was true for 

knee flexion (prone). Depending on the physical characteristics of the strap, it is possible that 

some force was absorbed by the strap and not transferred to the load cell, causing a greater 

variability among the gravity correction values. 

 

A final point of consideration is that when subjects were tested, the anatomical position of the 

leg was not necessarily the same as the lever arm's position in space. Because of the physical 

makeup of the force pad attachment, when the lever arm was positioned parallel with the floor, 

the knee was not at anatomical zero. Rather, the knee was usually in some degree of flexion. In 

this study, 25 subjects were tested on 2 separate days providing 50 opportunities to measure 

gravity correction. When the lever arm was parallel with the floor, subjects' knees were in an 

approximate average of 6 degrees of flexion, which might be considered the 'offset angle'. Knee 

flexion ranged from 0 to 16 degrees. The gravity correction procedure requires the tester to know 

where the lever arm is in space rather than the position of the leg. If the average value of this 

offset angle was 6 degrees, the knee would be gravity corrected at 6, 21, 36, 51, 66, and 81 

degrees of flexion. The offset angle varied among subjects but was reproduced during the retest 

so that the average difference between tests was 1 degree. The offset angle for the knee flexion 

tests was slightly less. The force pad was placed on the posterior aspect of the lower leg, causing 

the knee to be in slight hyperextension (average: — 2 degrees) when the lever arm was parallel 

to the floor. The average difference between offset angles from test to retest was less than 1 

degree. 

 

5. SUMMARY 

The gravity correction procedure was mechanically reliable at all positions tested and clinically 

reliable at most positions. However, even when the gravity correction procedure was reliable at 

positions away from the horizontal, it seemed to lack the ability to accurately gravity correct the 

same limb when measured at two different positions. As such, clinicians are advised to be 

consistent in selection of joint angle when obtaining gravity correction, and to consider correct-

ing at, or near the horizontal position. 
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